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Abstract

The combination of massive parallel processing and polycrystalline
plasticity theory offers the potential for applying detailed microstruc-
tural models to macroscopic deformation processes. In this work the
finite element method is used to solve for the three-dimensional de-
formation of a plastic workpiece. Tle elemental constitutive response

‘is derived from the microstructural response of a polvcrystal aggre-
gate situated in the element. Crystal orientations and their respec-
tive weighted contributions to the aggregate response are selected to
approximate the orientation distribution derived from experimental
pole figure measurements. The interaction of the material symmetry
adopted in analysis of pole figures and the boundary conditions posed
in the plasticity boundary value problem is examined. Through the
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introduction of distinct aggregates with decreasing crystal to aggre-
gate ratio. an inhomogeneous material response is developed where:
1) the orientation distribution becomes well approximated only by a
collection of spatially distinct aggregates. and 2) these aggregates ex-
perience deformation paths of increasing variation. [t is shown that
the use of spatially distinct aggregates in a material experiencing local
kinematic inhomogeneities throughout its deformation history leads o
texture predictions which compare favorably with experimental mea-
surements.

Running header: Process Simnulation using Polvcrystalline Models
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Nomenclature
a - constant in slip system constitutive relation
C - fourth order tensor mapping deformation rate to stress
C¢ - fourth order mapping tensor in a crystal
T - {ourth order mapping tensor in crvstal reference frame
[C] - 5 x 5 matrix representation of C '
D - symmetric part of velocity gradient
D' - deviatoric portion of D ,
D¢ - symmetric part of velocity gradient in a crysta
D - symmetric part of velocity gradient in crystal reference frame
{f} - discretized external force vector
F - deformation gradient
F* - deformation gradient in a crystal
FP . plastic portion of the kinematic decomposition of the crystal deformation gradient
F - Orientation Distribution Function
H - hardening function for the mechanical threshold
g - orientation in Euler space. ¢ = (v,0.0)
ge - crystal orientation
Ag, - volume associated with orientation g.
[G] - incompressibility constraint submatrix of FEM discretization
[Kp) - deviatoric stiffness submatrix of FEM discretization
L - velocity gradient
Le - velocity gradient in a crystal
m - exponent in slip system constitutive relation
[M] - mass matrix resulting from consistent penalty method
o - orthorhombic symmetry component operator
O - random variable for the orthorhombic symmetry operation
O - rotation representing an orthorhombic symmetry operation
p - pressure
P - nodal point pressures of FEM discretization
P symmetric part of Schmid tensor
Q° skew part of Schmid tensor
R* - lattice rotation in the kinematic decomposition of the crystal deformation gradient
T . Schmid tensor (v® @ 1*) of the a slip system
u - velocity
{U} - nodal point velocity of FEM discretization
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v - weighting functions in weak statement
v - weighting functions in weak statement
w, - crystal weighting factor fweight)
W - skew part of velocity gradient
We - skew part of velocity gradient in a crystal
WP . plastic spin from the kinematic decomposition of the velocity gradient in a crystal
3 - Parameter in penalty formulation
n* - normal vector of the a slip system
v - slip direction vector of the a slip system
4 . shear rate on the o slip system
\ - penalty parameter for incompressibility constraint
o - Cauchy stress
o’® - deviatoric portion of Cauchy stress in a crystal
o’ - deviatoric portion of Cauchy stress in crystal reference frame
7o _ resolved shear stress on the a slip system
# - slip system threshold
(1.8, @) - Euler angles
(¥,0, ®) - random variable uniformly distributed on interval [0, %]
al-,+), b(-,-), and (-, ) - symmetric bilinear form on volume
(+,-)r - symmetric bilinear form on surface with applied tractions [’




I Introduction

The continued evolution of computer performance has enabled analysts to
simulate increasingly complex problems of inelastic deformation. Improve-
ments in computational resources enable refined treatment of the complexity
of a problem associated with the workpiece geometry. the non-linear kine-
matics developed through the course of deformation. and the material con-
stitutive response. The finite element method offers one possible means of
numerically discretizing the equilibrium statements posed in the plasticity
problem. Such formulations lead to a series of computations which must be
carried out for each element in identical fashion. Traditional finite element
implementations conduct elemental calculations in a serial manner: first one.
then another. until computations for all elements have been completed. Al-
ternatively, these calculations may be performed in a tandem. or parallel
!, fashion so as to exploit the capabilities of massively parallel computer
architectures.

Depending on the constitutive theory adopted, parallelism may extend
further to the evaluation of the material behavior at a each finite element
computation point. For example. the material response at a computation
point may be evaluated by interrogating an aggregate of representative mi-
crostructural components. The aggregate response then will stem from col-
lecting individual responses of microstructural components spanning the ag-
gregate. At the microstructural level then, there exists the need to solve re-
peatedly the constitutive equations dictating the response of each component.
There exists significant potential for increasing computational throughput by
conducting the microstructural level calculations in parallel.

The direct use of microstructural aggregates for computing macroscopic
material properties is one approach to formulating constitutive theories. For
many common engineering alloys, several aspects of the plastic response can
be determined from knowledge of the orientation distribution of the crystals
and their individual response characteristics. Such an approach is especially
effective in situations where the deformations are sufficiently severe as to alter
the underlying microstructure and thereby modify the macroscopic proper-

'In this work, use of the word parallel generally refers to the algorithmic character of
computations which enables implementation on a parallel computer architecture.




ties.

In typical metal forming processes the deformations are intentionally
large. Accurate simulation of both the process history and the final product
properties depend on correctly tracking material response as dictated by the
evolution of microstructure. For a simulation to be effective. it therefore
becomes necessary to adopt a theoretical framework which provides a link
between the microstructural evolution and macroscopic product response.
However, for a particular theory to be useful in engineering analyses, a mini-
mal requirement is that the model parameters and state variables be specified
so as to accurately describe the initial material properties of the workpiece.
Micromechanically based theories offer the potential for describing the evo-
lution of complex behaviors. but increase the burden of state and parameter
identification. Parallel computing enables the large-scale application of these
very detailed constitutive models. It is important to limit choices to those
that satisfy certain engineering requirements:

1. that for an arbitrary sample. all of the state variables can be initialized,
and

(8]

that with existing technologies. the model parameters can be experi-
mentally determined.

Attention is focused here on the large strain plastic deformations of
polycrystalline metals in the regime of stress and temperature where crys-
tallographic slip dominates among the possible deformation mechanisms.
Polycrystalline plasticity theory has been studied extensively over the past
decade, especially for metals with face-centered cubic (FCC) and body-
centered cubic (BCC) lattices. Experimental techniques for measuring pole
figures representing the distribution of crystallites in a specimen are well
developed (WENK [1985]). Analytical methodologies to construct discrete
approximations of the orientation distribution from pole figure data are avail-
able (BUNGE & ESLING [1985]; MATTHIES & WENK [1985]). As such.
constitutive models based on polycrystalline plasticity theory meets our engi-
neering requirements concerning the measurement of parameters and initial-
ization of state. Further. the theory provides the means to compute deforma-
tion induced anisotropy based on the evolution of crystallographic texture.

This paper details the methodology for performing analyses of transient
forming operations. such as forging or deep drawing, utilizing a finite element

6




formulation with constitutive behavior derived from polvcrystalline plasticity
theorv. The implementation resulting from the formulation is designed to
make effective use of .a massively parallel computer architecture.

In the following sections. we emphasize several considerations in apply-
ing a microstructurally based constitutive theory to predict the evolution of
mechanical properties and its impact on deformation. Specifically,

e the measurement of state and the rendering of its discretized approxi-
mation are presented for a rolled aluminum specimen:

e iterative procedures are developed for solution of the finite element
svstem of equations for three-dimensional plastic deformation and the
microstructural constitutive behavior:

e for the finite element simulations of compression of the specimen, the
necessity for consistency between the specification of macroscopic-level
kinematic boundary conditions and symmetry in properties derived
from microstructural-level aggregates is reviewed: and.

e comparisons of simulation predictions of texture and deformed geome-
try are made with experiment.

The effect of spatial inhomogeneity in material properties on specimen de-
formation is examined. To this end. the availability of massively parallel com-
puting enables the parametric study of overall macroscopic deformational re-
sponse when local material properties exhibit slight variations from material
point to material point. Investigations by HARREN & ASARO [1989] and
BECKER [1991] have treated the problems of deformation inhomogeneities
at a microstructural scale by discretization of a small number of crystals. 27
and 31, respectively. Deformation of the the microstructure is treated explic-
ity, with compatibility and equilibrium issues addressed through application
of the finite element method.

A different approach to the effects of spatial inhomogeneity is taken in
the present work. \We adopt the framework of an existing microstructural
theory, the Taylor model (TAYLOR [1938}). In the present simulations there
exists a sufficient number of crystals to characterize the state of the material
on a macroscopic scale. Spatial inhomogeneity in the deformation field is
achieved through specification of different crystal populations for each of




the microstructural aggregates in the problem domain. A parametric study
detailing the implications of spatial inhomogeneity on computed texture is
presented.




II Theoretical Development

II.1 Governing Equations

At the global level. the simulation of the deforming workpiece is based on bal-
ance of momentum. conservation of mass. and conservation of energy coupled
with the appropriate kinematic and constitutive relations. The momentum
and mass expressions are used to formulate the solution for the workpiece
motion, while the energy equation is used to determine the temperature field.
The focus of this paper is on the mechanical response. and although the ther-
mal and mechanical responses often are tightly coupled. only the mechanical
formulation need be discussed for our purpose here.

Balance of linear momentum. assuming no inertial terms and neglecting
body forces. reduces to a vanishing stress divergence

vo=0 (1)

The material characterization will neglect elasticity and retain only the iso-
choric plastic deformations of a fully dense workpiece. Conservation of mass
then can be written for an incompressible motion as

Vu=0 (2)

The numerical solution for the motion stems from the weak form of eqns
(1) and (2). It may be cast in terms of a mixed formulation involving the
velocity and pressure once the deviatoric stress is eliminated via a viscoplastic
relationship of the general form

o=C.-D (3)

Here, the velocity gradient L has been composed of a symmetric part D and
a skew svmmetric part W. At a material point. the fourth order tensor C
will be associated with a specific aggregate deemed to be underlying that
point. As such, C will be a non-linear function of the orientations and slip
system hardnesses for all crystals in the aggregate. as well as the deviatoric
deformation rate D’.




I1I.2 Constitutive Response

Situated in each element. at a computation point located at the element
center. is a finite-sized aggregate of crystals. The aggregate is composed
of crystals whose orientations are representative of the material as a whole.
Each crystal in the aggregate is identified by Euler angles (v.6.¢) which
specify orientation g = {vc. 0. ¢.) with respect to a sample coordinate sys-
tem. Crystal orientations g, and associated volumes Ag, are assigned such
that the sum over all crystals in the aggregate approximates the integration
of the orientation distribution function F

S Flge) So. = [ Flgidg (4)

Each orientation is then assigned a normalized weight w,
g

_ Flye) Age
e F(9e) Age

which dictates the contribution of this crystal to the aggregate response.

Crystals are taken to deform solely by crystallographic slip in which one
plane of atoms shifts relative to others. First considering the deformation of
any one crystal within an aggregate. we decompose its deformation gradient
into that accommodated by slip through a stationary lattice. followed by
rotation of the lattice (ASARO & NEEDLEMAN [1985])

we

F*=R"F? (6)

This may be written in rate form in terms of the crystal velocity gradient
and separated into symmetric and skew parts to give

D =D* (7)
We=RRT+wW? (8)

The crystal deformation rate and spin. respectively, may be related to the
slip system shear rate

D=3 P°4° (9)

We =3 Q" (10)

a
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where P® and Q° are the symmetric and skew portions of the Schmid tensor
T =v" Tn'=P°+=Q° (1)

Similarly, the resolved shear stress can be related to the microscopic (crvstal)
shear stress through the symmetric portion of the Schmid tensor

= Po.g" (12)

At fixed state. the stress and the rate of shearing at the slip system level
are coupled via the constitutive relation (HUTCHINSON {1976]; ASARO &
NEEDLEMAN [1935])

-
1

~o = a(—)m (13)
T
where 7 is the slip system mechanical threshold. Here. all slip systems within
a crystal are assumed to harden identically so a single variable fully describes
the strength of the slip systems. Combining eqns (9), (12), and (13), the
stress for a single crystal may be written in terms of the deformation crystal
deformation rate and the stiffness. C¢. as

o =C° Df (14)

where C°¢ is evaluated from inversion of »
Cc—l = T_a #—1P0 - Pa 1

> af =) o) (15)

4

Eqn (14) must be solved for all crystals of an aggregate. The solution pro-
cedure is ideal for parallel processing because the equations are identical for
all crystals and each solution is independent of the others.

Coupling of the sample and crystal level behavior is accomplished through
the Taylor assumption: all crystals underlying a computation point experi-
ence the same deformation gradient. The Taylor assumption is used hecause
we are modeling a FCC material taken to moderate strain. the rate sensitiv-
ity is low, more than 5 independent slip systems with comparable hardness
are available, and there is at least a small degree of strain hardening. This
microscopic/macroscopic link is achieved through the requirement that de-
formation be identical at the microscopic and macroscopic levels

FC=F (16)
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or. equivalently. for the symmetric and skew portions of the velocity gradient
D°=D (17)
We=w (113)

Eqns (16-18) satisfv compatibility at the microstructural level. However.
equilibrium across cryvstals may not be satisfied.

Upon determination of the lincarized constitutive behavior at the crvstal
level. it is necessary to combine responses of the individual crystals to give the
macroscopic constitutive response. This is achieved by forming the weighted
average of the crystal level constitutive matrices

szwccf {19)

resulting the the macroscopic constitutive relation given in eqn (3).

In the following work we consider the uniaxial compression of a cylindrical
specimen composed of material exhibiting orthorhombic symmetry. This
specimen symmetry enables the modeling of one-quarter of the specimen. It
1s necessary that the stress state resulting from the Taylor model assumptions
described above be consistent with the boundary conditions posed for this
problem. To this end. we require that the shear stress components o},, o4,,
and o}, vanish (or are at least be very small) when these components are
recovered using the coaxial D’ used to develop C according to eqns (4). (3),
and (19). This requirement can only be satisfied through the specification of
the crystal orientations in the aggregate underiving a computation point. In
this work, two alternative means of enforcing this requirement are explored:

1. exactly, at the computation point level by explicit application of or-
thorhombic symmetry operations to crystals composing the aggregate:;

2. in an average, macroscopic sense by forming spatially distinct aggre-
gates using different samples of crystal orientations with associated
weights which approximately integrate the orientation distribution. and
with sampling sufficient to approximate orthotropic response in the
global system of equations.

In Appendix B, it is shown that the application of orthorhombic symmetry
operations leads the the development of an orthotropic constitutive matrix.

12




The latter option of generating aggregates with different distributions. having
some deviation from orthotropy. is discussed in the initialization of state.

To this point only the response of crystals or aggregates of crystals at fixed
state has been discussed. As deformation occurs. the material microstructure
changes and the state variables must evolve to reflect these changes. For
the polycrystalline models the crystal may both reorient and harden. The
evolution equation for the rcorientation stems from the kinematics at the
crystal level. The rate of change in the rotation of a crystal from its original
to current orientation may be written

R = {W°-WP)R" (20)

while for the hardening, the rate ol change of the mechanical threshold is
given in general terms as

P = HE D (21)
The detailed form of H(#) is discussed by MATHUR & DAWSON [1989].

13




III Data Parallel Implementation

As indicated in the introduction. parallel processing opportunities exist at’
several levels in the simulation of the deformation of materials. At the global
level in an implicit formulation. the finite element discretization involves the
formation of element matrices. the assembly of the elemental contributions
into the global matrix equation. and finally the solution of the matrix equa-
tion. The first two of these are easily accomplished within a parallel com-
puting environment. while the third has been more difficult to accomplish
with efficiency. Iterative solvers generally are better suited for a parallel
environment. and have been successfully used in formulations for elastic-
ity (MATHUR & JOHNSSON [1989]) and compressible fluid flow (JOHAN
et al. [1991)). However. within the context of plasticity formulations. the
incompressibility constraint has proved difficult to enforce while ensuring
convergence of the iterative algorithm.

Further opportunity for parallel computation lies at the computational
point level. That is. for materials comprised of an underlying microstructure
whose elements dictate the mechanical response, an aggregate of elements
must be examined at integration stations within the finite element formu-
lation to determine the material constitutive response. For polycrystalline
metals acting under the Taylor hypothesis. the microstructural calculations
for the stress and crystal reorientations are essentially independent and may
be performed easily in parallel. Further. as the population of crystals is very
large when the product of the aggregate size and the number of computation
points is considered. the potential benefit for performing the calculations in
parallel is great.

The simulations discussed herein embody all of the parallel structures
mentioned in the preceding two paragraphs. Unique in this work are the
efforts to take advantage of massively parallel computer architecture for the
crystal level calculations and the iterative solution of the global matrix equa-
tion. Each of these will be discussed in more detail in the remainder of this
section.

14




II1.1 Data Parallel Algorithm for Crystal Equations

In considering the numerical implementation of this simulation on a massively
parallel computer. it is convenient to think of all crystals of a2 workpiece as
being arranged in a rectangular array with each row containing of all the
crystals of one aggregate (Figure 1). There are as many columns in the array
as there are crystals in each aggregate and as many rows as aggregates within
the workpiece. This arrangement has a one-to-one correspondence with the
algorithms used to map arrays in the parallel architecture (THINKING MA-
CHINES INC. [1991}). '

At the macroscopic level a unique value of stress must be derived from
all the crystals in a row of the arrav. Thus. from the perspective of a
deformation-driven calculation. the macroscopic velocity gradient must be
"broadcast” to each crystal of an aggregate for use within the calculations
of crystal stress and crystal reorientation. The macroscopic stress is a conse-
quence of averaging crystal stresses across a row in the array. As each mate-
rial point at the macroscopic level potentially has a unique velocity gradient.
each row in the array receives different “data” for crystal computations.

The specific steps of the calculations at the crystal level. which might be
executed either to evaluate the crystal contribution to the material stiffness
matrix [C] or to update the Euler angles (¢, 0., o), are listed below.

1. The macroscopic velocity gradients, evaluated for each aggregate (or
element), are broadcast across processors to all crystals of all aggre-
gates.

2. A sequence of data parallel operations are performed in which:
(a) the macroscopic deformation rate first is rotated to the crystal
coordinate system

(b) the crystal stress then is evaluated using the non-linear constitu-
tive behavior appropriate for crystallographic slip, which is fol-
lowed by either

i. computing the effective, linearized. constitutive matrix in the
macroscopic reference frame. or

il. updating the orientation of crystals

15




3. Weighted averages of all constitutive matrices are computed to give the
effective bulk macroscopic constitutive matrices to be used in the finite
element computation.

In the context of the data lavout described above. the broadcast operation is
like spreading a vector of dimension equal to the number of rows (aggregates)
to all columns. The broadcast of data to all crystals and the averaging of
crystal responses to derive macroscopic properties involve native Connection
Machine operations.

I11.2 Finite Element Formulation and Iterative Solu-
tion Procedure

Following the notation of HUGHES [1987]. the finite element formulation is
developed from the weak forms of the equilibrium statement (1)

a(v.u) = blv.u) = (v. f) + (v.t)r (22)
and the mass conservation statement (2)
(v.-u)=20 (23)

Upon introduction of appropriate weight functions and linearization of the
constitutive response. {inite element procedures lead to the discretized system
of equations (THOMPSON [1969]: ZIENKEWICZ [1977])

A I T 20

In a parallel computing environment it is customary to use an iterative proce-
dure, such as the conjugate gradient method. to solve the system of equations
(24). However. two significant complications arise in the viscoplastic formu-
lation. Owing to the non-linear dependence of the the matrix [\'p] on the ve-
locity field, the linearized form (24) must be repeatedly solved to develop the
constitutive response (DAWSON {1984]). The incompressibility constraint
introduces a further complication in that it degrades the condition of the
eqns (24). This leads to a prohibitive number of conjugate gradient itera-
tions in the development of the velocity field. It is customary when using the
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conjugate gradient method to perform operations on the coefficient matrix to
improve its conditioning and consequently enhance numerical performance.
In this discussion the preconditioning is limited to diagonal scaling.

In the following formulation. we seek to further decouple the incom-
pressibility constraint from the conjugate gradient procedure. To deveiop
a penalty method. it is general practice to introduce a “constitutive” rela-
tionship ’
where 3 represents the bulk viscosity for a slightly compressible fluid. The
parameter .3 is chosen in some manner which balances maintenance of the in-
compressibility constraint with numerical performance. In preparation for an
iterative procedure. and following ZIENKEWICZ et al. [1985], an alternative
constraint

A7 ut = pt (26)
is posed. This is a statement that convergence of the pressure in the 1 + 1
iterate assures an incompressible velocity field u;4;. Upon introducing (26)

into the weak forms (22) and (23). finite element procedures lead to the
discretized system of equations

(Kb +XGM'GT| (U™} = {f} + [GI{P") (27)

and

(P} = (P} = AR (G (U (28)
where [M] is taken to be the pressure mass matrix of the Consistent Penalty
Method presented by ENGELMAN et al. [1982]. Equation (27) is solved
(also in iterative fashion) by the conjugate gradient method. Upon determi-
nation of the velocity, the pressure is updated using (28). Use of piecewise
discontinuous shape functions for the pressure field enables the construction
and inversion of [Af] at the elemental level. This allows for a data paral-
lel development of the elemental matrices [A'p], [G], and [M]~!. Details of
gathering elemental matrices for solution of the global system of equations
is given by MATHUR et al. [1992].

The key factor in this approach is that the penalty parameter A need not
necessarily be large. As such. the linear system remains well-conditioned in
the early iterations of eqns (27) and (28). This effectively decouples the con-
jugate gradient solution for the velocity in eqn (27) [rom the incompressibility
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constraint for these initial iterations. Numerical difficulties inherent in the
velocity-pressure lormuiation appear only in excessive iterative attempts for
which the previous iterate {{*} has converged to the correct solution within
acceptable numericai precision. This vields a convergent iterative algorithm
and enables the eifective use of a paraliel environment.

Additional benetits can be derived from this iterative procedure when ma-

terial properties are a non-linear function of the deformation rate ( (ZIENKEWICZ

¢t al. [1985]). The kinematic dependence of the stiffness matrix [ p] is up-
dated at each iteration of eqn (27) based on the previous velocity field {{"*}.
However. the material state as characterized by the weighted orientations
and slip system hardunesses is not updated in the course of these iterations.

A simple Euler update is used to update the problem geometry. The
geometry is advanced using the converged solution from the iterative proce-
dure just described. The material state is correspondingly updated using the
data parallel algorithm detailed above. The deformation is performed with
a variable time step. with finer time steps taken in the initial iterations.

18




IV Materials and Method

IV.1 Mechanical Testing

Cvlindrical specimens were machined {rom hot rolled 3000 series aluminum
alloy plate with the axis in the normal direction 1 ND). This stock was chosen
as it was available with dimensions sulficient to machine into compression
specimens. The specimens were then deformed at a constant true strain rate
of 1 s~! using closed loop control on a servo-hydraulic load frame.

Undeformed and deformed specimens are shown in Figure 2. During com-
pression the circular cross-section became oval. with the long cross-sectional
axis corresponding to the original rolling direction and short axis to the trans-
verse direction. This indicates that principal directions of the compression
deformation were coincident with the axes of material symmetry established
by rolling, as detailed in the texture analysis discussion below.

IV.2 Texture Analysis

Samples for x-ray analysis were prepared from both undeformed stock and
deformed specimens. The sample orientation was taken with the normal
coincident with normal direction of the rolling process. Pole figures ({111},
{200}, and {220}) were obtained using a 4-circle pole figure goniometer. The
x-ray data was analyzed using the popLA (“preferred orientation package -
Los Alamos”) software (KALLEND ef al. [1991]). Several operations were
performed which:

1. rotated the pole figures about the normal axis to remove sample align-
ment errors:

o

normalized the pole figures and completed the periphery of each figure

using harmonic analysis (BUNGE & ESLING (1985}); and

3. developed the sample orientation distribution. or SOD (WENK & KOCKS
[1987)), using the WIMV method (MATTHIES & WENK [1985]).

The normalized. completed pole figures of the experimental data collected
on the undeformed specimen are shown in Figure 3A.

19




Quantitative analvsis of these pole figures leading to a mathematical de-
scription in the form of an orientation distribution function requires that
some judgement be made as to the sample symmetry inherent in the mate-
rial. The qualitative appearance of the pole figures in Figure 3A suggests
the presence of orthorhombic sample syvmmetry. This is also in agreement
with the pole figure data being derived from the center plane of rolled stock.
Analysis was thus performed using the \WIMV algorithm with implied or-
thorhombic symmetry. The effects of this choice on the boundary value
problem studied in this work will be discussed subsequently in detail.

Pole figures recomputed as part of the WIMV algorithm are shown in
Figure 3B. Orthorhombic symmetry is clearly evident. The WIMYV algorithm
converged quite rapidly for this experimental texture data. The value of the
RMS relative error averaged over the pole figures was 2.9% after 6 iterations
(KALLEND et al. [1991]).

The popLA software also can generate pole figures and orientation dis-
tributions from the discrete data through the DIscrete ORientation program
(DIOR). This program was used in the following work to generate the graph-
ical results from the weighted. discrete orientations used in the simulations.

IV.3 Initialization of State
IV.3.1 Explicit specification of orthotropy at the aggregate level

To utilize the finite element code for material with initial anisotropy, it is
necessary to characterize the initial material state. The polyerystalline ap-
proach may be considered to be a state variable approach with the number
of state variables equaling the number of crystals in an aggregate times the
number of identifying variables within a crystal. For example. if the material
state is described by 256 crystals. each of which has an orientation specified
by 3 Euler angles and a strength. the number of state variables totals 1024.
However. it'may be advantageous to weight each crystal’s contribution to
the averaged aggregate properties differently. To do this a weight parameter.
whose value remains fixed throughout the course of a deformation, is assigned
to each crystal. In this case. the 256 weights and 768 Euler angles must be
selected together so that resulting density distribution accurately represents
the texture observed in an x-ray analysis.
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The WEIGHTS program of the popLA package was utilized to derive a
weighted set of 256 discrete Euler angle locations from the sample orientation
distribution {KOCKS {19901). Svmmetry operations required for orthorhom-
bic sample symmetry were then applied to the 256 locations resulting in a
distribution of 1024 weighted discrete urientations to he used in the simu-
lation. Every finite element was assigned an aggregate with this identical
distribution of state parameters.

Pole figures reconstructed from this weighted set of orientations are shown
in Figure 3C. The orthorhombic symmetry present in this discretized repre-
sentation of the texture is readilv apparent.

IV.3.2 Random sampling of the sample orientation distribution

In this approach. the orthotropic material response is not satisfied locally.
However. sufficient symmetry is present to satisfy the imposed boundary
conditions when the average response is considered over all elements. In other
words. orthotropy is achieved in a macroscopic sense by element contributions
to the global stiffness matrix.

An aggregate is situated in cach finite element. However, in contrast to
the approach described in the previous subsection. each aggregate contains
a distinct set of crystals. Random sampling is performed to develop a dif-
ferent set of orientations for each aggregate. Three independent identically
distributed random variables W.-©. and & which follow a uniform distribu-
tion are defined. Also defined is an integer random variable specifving an
orthorhombic symmetry operation (Appendix B)

1

Pr(O:l)=Pr(O=2)=Pr(O=3)=Pr(O=4)=4 (29)

The orientation distribution generated by WIMV is in a discretized {orm.
Densities are listed on a 3° x 3° x 5° mesh. To generate a weighted orien-
tation, or a crystal in the aggregate. a sample is taken of the above random
variables. The Euler angles are used to evaluate the crystal's weight from
the density created by the WIMV algorithm through linear interpolation
of the discretized orientation distribution. A sample symmetry rotation is
conducted as specified by the random value of the symmetry parameter. 0.

This procedure is performed for all crystals in a parallel fashion. An
array structure with dimensions of the number of elements by number of
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cryvstals in an aggregate is initialized with random values by a single call
to the native data parallel random number uenerator. Interpoiation and
rotation are the performed concurrently. Pole figures reconstructed from
1024 weighted orientations developed using this random sampling technique
are shown in Iigure 3D.

Slip svstem model parameters were developed to approximate the channel
die compression of aluminum. The values used in this work were ¢ = 1.0.
m = 0.05. and. 7, = 27.2 (for all slip systems).
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V Results

The compression of specimens to one-half of the original height was simu-
lated to correspond to the experiments described earlier. The problem ge-
ometry was discretized into 236 elements using s-node brick elements. The
deformation was carried out in 50 time steps. Simulations were repeated for
several different methods of defining the aggregates of crystals within the
finite elements. First. simulations were performed using a weighted discrete
orientation file created by the WEIGHTS program of popLA. In the following
discussion. the results for these simulations are labeled “WTS™. Simulations
also were performed in which the element aggregates were defined using the
random sampling procedure with crystal to aggregate ratios of 1024. 256.
64. and 16. These simulations are denoted by the crystal to aggregate ratio.
Multiple simulations were made for cach crystal to aggregate ratio.

The weighting factors for crystals were chosen from the orientation data
for the rolled specimens prior to compression. However. to verify the sound-
ness of the random sampling technique. simulations first were carried out
based on aggregates chosen from a uniform density orientation distribution.
The results of these simulations yielded the expected result that an untex-
tured circular cylindrical specimen retained a circular cross-section. The de-
formations were essentially axisymmetric. with no preferred directions within
the plane having its normal in the compression direction.

V.1 Predictions of Specimen Deformation

As stated previously. a predominantly coaxial deformation mode is developed
in the experimental specimens. where by coaxial it is meant that the principal
axes of the deformation align with those of the principal symmetry axes of the
initial material. Deformed meshes for the WWTS simulation and the random
sampling (64 crystals per aggregate) are shown in Figure 4. In the WTS
simulation, every aggregate was initially identical with orthotropy enforced at
the aggregate level. As a consequence. a very uniform deformation behavior
was achieved (Figure 4A). To the numerical precision held in the simulations.
there was no gradient in the velocity along the specimen cvlindrical axis.
Results from the random sampling simulations demonstrated a depen-
dence of deformation pattern on number of crystals per aggregate. Simula-
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\Method Ovaline

WTS 1.166
1024 1.129 (n=2)
256 1.134 (n=2)
4 1.132 (n=3)
16 1.132 (n=4)
Experimental 1.103 £0.005 (n =3)

Table 1: Average ratio of long cross-section axis to short cross-section axis
based on n trials

tions conducted with 1024 crystal to aggregate ratio were very similar to the
\WWTS simulation with little variation in velocity along the specimen axis and
minimal shearing between elements. The variation of cross-sectional velocity
components along the cylindrical axis was less than 0.5%. As the crystal
to aggregate ratio decreased. localized shearing was observable in elements.
This shearing is evident in Figure 4B. All of the simulations overpredicted
the actual specimen ovaling (Table 1).

To better characterize the localized variations in deformation. the average
and standard deviation of the velocity gradient components were examined
for each crystal to aggregate ratio. These values were developed by averaging
the velocity gradient for all elements (Table 2). Averaging was performed
after the first converged solution for the onset of deformation and prior to
any update of the specimen geometry. For all cases the averaged off-diagonal
components are small when compared with the diagonal components. On
the average, or considering a geometric volume scale on the order of the
specimen size. deformation is coaxial. However. the standard deviation of
the components increases with decreasing crystal to aggregate ratio. This
indicates that locally, at the geometric scale of an element volume, there
exists an increasing variation of the shear components of the deformation
throughout the specimen with decreasing crystal to aggregate ratio.




1024 | 0.526=0.003  0.000 = 0.004  0.000 = 0.002
—0.000 = 0.005 U474 = U003 —0.000 = U.002
—0.000 £ 0.002  0.000 = V.002 —1.000 £ 0.002,

356 | 0.538=0.007  U.001 = 0.013 —0.002 = 0.005
~0.001 =0.012  0.462 = 0.008 —0.003 = 0.005

0.001 =0.005  0.001 = 0.005 —1.000 £ 0.010

64 | U539 <0012 —0.001 =0.029 —0.001 = 0.009
—0.002 £ 0.024  0.461 = 0.011  —0.000 £ 0.008
0.001£0.011  0.003 £0.011 —1.000 = 0.008

16| 05410030 —0.010=0.055 —0.002=%0.019
0.000 £ 0.056  0.459 £0.028  0.004 + 0.022

0.002 £ 0.030 —0.005 + 0.023 —1.000 % 0.017

Table 2: Mean and standard deviation of components of elemental velocity
gradients

V.2 Texture Predictions

Textures following compressive deformation from selected simulations are
shown as polar sections of the crystallite orientation distribution (COD) in
Figure 5. These are constant o sections in Euler space using that when
overlaid vield the projection of the {100} pole figure [1987]. Also shown
is the COD section plot developed from the WIMV analysis of a deformed
specimen. The DIOR program was used to construct the COD sections
produced by the numerical simulations. In all cases. 1024 discrete weighted
orientations were used as input. The COD for the 1024 crystal to aggregate
ratio case draws crystals from only a single element. At the other extreme.
the 16 crystal to aggregate ratio case requires use of 64 elements to create
the COD sections. Orthorhombic sample symmetry operations and cubic
crystal operations were applied to each discrete location to develop equivalent
orientations in an Euler space volume of £ x 7 x 3. The sections were plotted
using a logarithmic scale, retaining an identical scale for all sections. This
casts the results in a rather harsh light. but enables critical comparison.
Results for the WTS simulation show that some components in the ex-
perimental texture are omitted. Other components of the WTS texture are
of much greater density than found in the experiment. In particular. there
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exists a position of elevated density along the specimen 2 axis (transverse
direction) present vn the o = 0° and o = 40° C'OD sections. This texture
component is denoted by an arrow in Figure 5.

For the random sampling. all of the pre-dominant components of the
texture are present. However. the 1024 crystal to aggregate case shares the
elevated density along the specimen 2 axis (again denoted by an arrow). This
artifact gradually decreases with decreasing crystal to aggregate ratio. All
simulations lack some ol the background present in the experimental texture.
Most notable is the diffuse component of texture at the origin present in all
COD sections of the experimental results. \Vith the scale adopted in these
plots. only the 16 crystal to aggregate ratio simulation exhibits such texture
components. and then only on the o = 20° and o = 40° COD sections.

Further insight is gained by comparing the quarter pole figures shown in
Figure 6. These pole figures are the {100} projections {rom the orientation
sections of Figure 5 plotted with a scale which more appropriate for this
projection. The peak texture component in the experimental pole figure is
similar in magnitude and location to the 256 and 64 crystal to aggregate ratio
simulations. The corresponding location in the 16 crystal to aggregate ratio
case is of less intensitv. In contrast. only the 16 crystal to aggregate ratio
pole figure exhibits a component of texture coincident with the specimen
normal direction at the pole figure center (lower-left hand of section). This
texture component is readily observable in the experimental pole figure.




VI Discussion

The simulations with randomly selected populations of crystals illustrate a
number of important issues relative to modeling the mechanical response of
polvcrystalline materials. The essential feature of random sampling. which is
performed independently for each of the aggregates within the workpiece. is
that it introduces some degree of spatial variability in the mechanical prop-
erties. This variabilitv tends to decrease as the ratio of crystals to aggregate
increases.

In the limit of a very large crystal 1o aggregate ratio. the sampling of each
aggregate is sufficient to ensure that all aggregates display the properties ex-
pected for the complete orientation distribution. Properties are essentially
homogeneous for spatial locations derived from a common orientation distri-
bution. At the other extreme is the selection of a small number of crystals
to represent an aggregate. The “aggregate™ then may he interpreted as rep-
resenting the interaction between a collection of nearest neighbor crystals as
governed by a microstructural model (in this work the Taylor model). A
possible choice for a lower limit is based on the space-filling model advanced
by LORD KELVIN [1887]. In this case. each crystal is represented by a
tetrakaidecahedron with 14 faces. cach in contact with a nearest neighbor.
Ve choose as a minimum representation an aggregate consisting of 16 neigh-
boring crystals. simply because a power of two leads to better use of the
parallel architecture. Interaction between aggregates is achieved at a global
level by satisfaction of the equilibrium and continuity requirements inherent
in the finite element formulation.

In contrast. when the same sample of crystals defines the aggregate ini-
tially at all spatial locations within the workpiece. the properties are homo-
geneous. This is true regardless of how the sample was chosen and whether or
not it replicates the behavior of the full orientation distribution well. In this
work, the WTS aggregates were chosen to reproduce the initial texture to
the greatest extent possible with a limited number of crystals. Indeed. com-
pared to aggregates with equivalent numbers of randomly sampled crystal
orientations. the WTS file will better represent the orientation distribution
(KOCKS et al. {1990)). The important difference to keep in mind. however,
is that with the WTS representation. exactly the same aggregate is used at
every spatial location in the workpiece: while with the randomly sampled ag-
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eregates. the various aggregates within the workpiece differ from each other.

The impact of spatialiv varving properuies 1s profound. There is a distinct
coupling between the existence of variable properties and the evolution of tex-
ture. Consequently. as the deformation proceeds the texture development in
a workpiece with inhomogeneous properties may be quite different from one
with initially uniform properties. As opposed to situations where the sur-
face velocities of the workpiece are fully prescribed. this is more pronounced
for applications having traction-free boundaries. Specification of kinematic
boundary conditions requires that the average component values of the ve-
locity gradient are predetermined. irrespective of local inhomogeneities in
deformation field. In the case of traction-iree boundaries. there ise¢a mu-
tual dependence between the deformed geometry and the texture evolution:
altering texture evolution implies a different strain path.

The existence of spatially varying properties causes the body to respond
differently to external loading than if the properties are uniform. This is
evident in the comparison of the velocity gradients given in Table 2. While
the average macroscopic deformations are consistent with a coaxial defor-
mation and at the macroscopic level equilibrium is satisfied. internally the
deformation varies more as the crystal to aggregate ratio decreases. For
the compressive loading case examined. the variability in velocity gradient
implies the existence of shearing components of the deformation gradient.
Individual aggregates thus experience different strain paths with the result
that for neighboring aggregates the texture evolution is not the same. The
variation in the deformation rate retards the texture evolution in comparison
to that in a workpiece with uniform properties. This decrease in the rate of
texture evolution is clearly evident in the pole figures generated by the 16
crystal to aggregate ratio simulation when compared to both experimental
data and simulations with higher crystal to aggregate ratio (Figure 5).

It has long been known that polvcrystalline models based on the Taylor
hypothesis of equal straining of all crystals texture too quickly (DILLAM-
ORE & KATOH [1974]). This has been attributed to the inability of the
model to account for local inhomogeneities in deformation as well as the
limited manner in which crystal interactions occur. Such shortcomings have
spawned investigations of models which enforce combinations of equilibrium
and compatibility differently from the Tavlor hypothesis. In this work, the
Tavlor hypothesis has heen retained for the response of every aggregate.
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but not globally. Through the finite element discretization of the workpiece
interactions of distinct aggregates occur through the global system of equa-
tions. No specific action was taken to damp the rotation of a specific cryvstal:
textures are more diffuse because of the variation in velocity gradient from
aggregate to aggregate. It is of note that. in the specific case of 16 crystals in
an aggregate. a texture computed using the Taylor model exhibits retarded
development when compared to experimental texture measurements.

For small crystal to aggregate ratios. it may be useful to think of the ag-
gregates as small clusters of crystals that act as a unit to define the properties
of a computation point at the macroscopic scale. Because of finite crvstal
size. it is not reasonable to allow the number of crystals in a single cluster
to become large enough to represent the {ull orientation distribution well.
Rather. the deformation is not uniform over spatial dimensions containing a
population of crystals sufficient to characterize the orientation distribution.
By considering small clusters of crystals with the attribute that each clus-
ter is chosen at random independently of others. real spatial variability of
properties can be simulated.

Interaction between the macroscopic and microscopic aspects of poly-
crystalline simulations are not limited to the issue of spatial variability from
aggregate to aggregate. Macroscopic and microscopic coupling extends to the
interplay between boundary conditions posed in the plasticity problem and
the degree of material symmetry inherent in the problem domain. Without
accounting for material svmmetry through specification of Euler angles in
aggregate(s). a very different deformation may be developed than would be
expected. To our knowledge. this issue is little addressed in previous finite
clement modeling efforts using polycrystalline theory. One study that did
address this issue is that of HARREN & ASARO [1989], who achieved a
globally orthotropic deformation through the development of an orthotropic
unit cell consisting of crystals with idealized two-dimensional slip systems.

There are perhaps two reasons for the limited treatment of material sym-
metry in macroscopic deformation problems. Many simulations have used an
initially uniform specification of orientations (MATHUR & DAWSON [1989];
BRONKHORST et al. [1991]; KALIDINDI et al. [1991}). With adequate
sampling of crystals in the aggregate. such that on the order of hundreds
of crystals contribute to the representation of the deformed texture. mate-
rial symmetry is naturally developed through the course of the deformation.

29




Another possible reason is the problems that have been studied are predomi-
nantly plane strain compression simulations such as rolling. wire drawing. or
channel die compression (HARREN & ASARO [1989]: MATHUR & DAW-
SON [1989]; BECKER [1991}). Here the spatial kinematics are dominated
by the strict enforcement of kinematic boundary conditions. A longer term
goal for using polycrystalline plasticity theory must be for simulating sheet
metal forming processes such as deep drawing. Here. the interplay between
initialization of texture. material symmetry. and boundary conditions will be
in the forefront of the modeling effort.

We selected to model only a quarter of the cylindrical specimen with pla-
nar boundaries aligned with the axes of material symmetry. This choice 1s
consistent with the decision. based on experimental texture measurement. to
represent the texture with a 3 x 3 x 5 section of Euler space. This consis-
tency is explicitly maintained in the WTS simulations where each aggregate
represents a uniformly orthotropic material. As a consequence. normal trac-
tions are not developed on the symmetric faces of the quarter cylinder. Such
will not be the case when the aggregates are formed by random sampling
of the sample orientation distribution. In this case the symmetry of the
deformation is preserved. but non-zero tractions will be present along the
planes of symmetry. This is a macroscopic effect of applying the Taylor
model with spatially distinct aggregates only partially representative of the
orientation distribution. Similar trade-offs to those made in the develop-
ment of microstructural models apply in the application of these models at
a macroscopic scale. In our application. much is gained by analyzing the
experimental data with a maximum of symmetry. The specification of the
macroscopic boundary value problem should be consistent with the analytic
description of the texture. Specific microstructural choices are reflected in
the macroscopic solution.

This work is similar in spirit to investigations of nonuniform deformation
developed through discretization at the microstructural level (HARREN &
ASARO [1989); BECKER [1991]; KALIDINDI et al. {1991]). In these stud-
ies the individual crystals are discretized and continuity between crystals is
achieved through the finite element formulation. Interaction between neigh-
boring crystals leads to locally nonuniform deformation with a concomitant
modification on the prediction of texture development. The texture result-
ing from the finite element treatment of the microstructure may differ sig-
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nificantly from that predicted using the Tavlor theory. both in the rate of
texturing and the absence or presence ol texture components.

In contrast to these microstructural studies i HARREN & ASARO {1989]:
BECKER [1991]: KALIDINDI ¢/ al. [1991]). the current work treats mate-
rial inhomogeneities on a macroscopic scale. It is still necessary to adopt a
microstructural model from which 1o derive the constitutive response at a
computational point (here the choice happens to be the Taylor assumption).
However. with aggregate to aggregate variability the deformation is not ho-
mogeneous on a scale spanning different clements (or quadrature points).
Thus it is the spatially heterogeneous properties arising from the small sam-
ple size that gives rise to inhomogencous deformation. without need to aban-
don the microstructural theory deemed appropriate for a given application.
Such variability can’t be obtained directly if the same aggregate. regardless
of size. is assigned to each spatial point in a workpiece. Further. retaining
the approach of an aggregate of crystals which act in accordance to some
microstructural model enables the initialization of texture on a macroscopic
scale.

This work does not intend to displace efforts in the development of mi-
crostructural models. Indeed. self-consistent (HUTCHINSON [1976}; MOLI-
NARI et al. [1987]) or relaxed constraint models (HONNEFF & MECKING
(1975]) may lead to much improved results. Our results simply suggest that
spatial inhomogeneities also play a role in the texture evolution. On a more
algorithmic note. these models may provide interesting challenges in a paral-
lel implementation. Crystal interactions must be translated into interproces-
sor communication: such communication is minimal when using the Taylor
model.

It is often said of the finite element method that the real effort, in terms
of man-hours, lies in mesh preparation. Much the same can be said of the
initialization of texture in this work. \Ve found our results to be sensitive
to the initial texture measurements. Several sets of pole figures and the
orientation distributions were developed. X-ray technique plays a large part
in the accuracy of the resulting orientation distribution. Visual comparison of
pole figures from different experimental tests may compare very favorably in a
qualitative sense. However. the quantitative orientation distributions derived
from analysis of different sets of pole figures led to significant variations of
deformational behavior in the numerical simulations.
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# of elements 2356

# of nodes = 337

# of dof = 1161

# of aggregates = 256

Crystal to aggregate ratio = 256 512

# of time steps 50

Total simulation time = 1426s 2525 s
Time per element per crystal per time step = 0.44 ms 0.38 ms

Table 3: Timing statistics for simulation conducted on an 3K CM-2 config-
uration

The numerical simulations represent the solution of an initial value prob-
lem with thousands of initial values in the form of weighted crystal orien-
tations and slip system hardnesses. Clearly, the quality of the numerical
predictions is constrained by the quality of the input. We carried out sev-
eral WTS simulations using weighted orientations derived from different sets
of experimental pole figures. The predictions of specimen ovaling improved
with the quality of the pole figure data collected on the four circle goniome-
ter. This leads to the conclusion that experimental issues such as goniometer
alignment. correction for defocusing and background. and pole figure nor-
malization play a large role in specifving the initial conditions which lead to
correct prediction of speciinen deformation.

The simulations described in this work are computationally expensive.
The computational demands of simulations of plastic deformation based
on polycrystalline plasticity theory has been documented in the literature
(SMELSER & BECKER [1991]). Extending the application of theory from
plane strain applications to more general three-dimensional deformation prob-
lems furthers the requirements made of both software and hardware. Modern
parallel processing architectures enable these simulations to be conducted in
timely fashion. Execution time statistics for simulations with crystal to ag-
gregate ratios of 256 and 512 are listed in Table 3. Simulations using 1024
crystals per aggregate required a minimum 16 IX processor CM-2 configura-
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tion. In contrast. convergence of the conjugate gradient method for the lower
crystal to aggregate ratio cases was siower as a consequence of the locally
more inhomogeneous deformation field. Parametric studies. such as the ef-
fect of crvstal to aggregate ratio on the development of texture. are clearly
manageable with present architectures.

The combination of polvcrystalline theory and modern parallel processing
provides a powerful tool for the analysis of inelastic deformation for a large
class of engineering materials. The successful application of polycrystalline
theory rests on a history of fruitful developments in quantitative texture
analvsis (BUNGE [1982]: BUNGE & ESLING [1985]: MATTHIES & WENK
[1985]). Through this theory. we mayv make a quantitative measurement of
the state of our material. In addition. the theory enables one to represent this
state by specifving the orientation of thousands of crystals which represent
a sample of. or aggregate contained in. the material. Massive parallel pro-
cessors then allow for the effective computation of the material response de-
rived from the aggregate response based on the action of individual crystals.
The beneficial interaction of theory and computational horsepower extends
bevond the details of simulation. A consequence of massive parallel compu-
tations is the need to view and interpret tremendous quantities of data in a
manageable fashion. In these polycrystalline based simulations. this need is
met by theory to develop the orientation distribution function and graphical
tools for display of the orientation distribution already in place (WENK &
KOCKS [1987]). The blend of theory and massive parallel processing now
enables one to study the development of texture in three-dimensional spatial
problems of engineering interest.
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A Vector Representation of Deviatoric Ten-
sors

To effect numerical computations. the deviatoric tensors in this work are cast
i a5 element vector form. Accordinglv. the fourth-order stiffness and com-

pliance tensors are represented as 5 < 5 matrices. The following convention
is adopted (MATHUR «f al. {19901

D={D} = {Dn—Dn Dy Dayy. Dsy, D3} (30)
P = {P}r = {Pyy = Py Puz, P, Py Pra} (31)
i) = (TR S oo 32)
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B Development of Orthotropic Material Prop-
erties at the Aggregate Level

\We wish to show that 4 crystals of equal volume (or weight). undergoing a
coaxial deformation. with orientations related by orthorhombic sample sym-

metry operations. form an orthotropic stiffness matrix. The orthorhombic

operations are

1 00 _
o =101 0 (33)
0o |
r0 v
o"MN=10 -1t 0 (34)
LU U =1
(-1 0 0]
o= v 1 o (35)
| 00 -1
[ =1 0 0]
o =1 v -1 0 (36)
L 0 0 1]

To achieve this an orthotropic response. the four crystals must exhibit identi-
cal constitutive behavior. To this end. we require that these crystals share the
same slip svstem hardnesses and that slip system viscosities are developed
using the power law relation. These crystals differ in state by orientation
only. In the following development. barred quantities are defined the crystal
reference frame. In accordance with the Tavlor hypothesis. the deformation
rate D in the crystal reference frame for a crystal associated with the
rotation O is

D" = (ROWT) D (ROWT) (37)
where R is the is a matrix relating the sample coordinate system and the
coordinate svstem of the crvstal associated with the identity operation O,
VANHOUTTE & AERNOUDT [1976] have shown that such two orientations
with be equivalent. that is stresses in two lattice frames will equal

7 _ 7l i.j € {0.1.2.3} (38)




provided that rotations O :ind OY! commute with the sample system defor-
mation rate D. Such i~ the case in the coaxial deformation and orthorhombic
svmmetry operations cousidered in this study. Hence the constitutive behav-
ior developed from 1he crvstal response

7=C-D 139)

will be the same for the four equivalent orthorhombically-related orientations.

It will now be shown that the averaged constitutive response derived from
the four crystals vields an orthotropic stiffness matrix. We switch to a com-
ponent notation with no sum implied on anv index. The four orthorhombic

rotation operators mayv be written in the abbreviated form

o = it (10)
o = L-n=1f (41)
ot? (—1.1.-17 (42)
I . . (43)
The averaged stiffness matrix ¢ is
: I & :
Ciskl = I Z OE L)OEm)Uin)()Lm)(_‘UH (44)
T m=0
or. as 09 represents the identity operation
- 1 2 tm) (m) {m) (m)
Cokl = —}-('41'7}‘1 | + Z O, 0. v 0 (45)
m=1
Rewriting the rotation operator
o\ =20, =1 (46)

where m € 1.2.3 results in

1 2 _
Cijkt = —Cijkl { S (20 — 1)(28m, = 1285k = 1)(26m — 1)} (47)

+ m=1
Using the definitions
6,‘jk1 = | fi=)=k=1
= 0 otherwise (48)




and

ok =1 fi= =4k

= 0 otherwise (49)

and expanding eqn (7) gives

) 1 . )
Cijkl = If‘ijkz[(éi; + Ok Ty T O+ O+ 0 — 1)

=28k + dijt + Okt + Oyxt) + 4045k1) (50)
\We are interested in the zero components of ¢,

o For components relating a normal stress component to a shear defor-
mation component (i = j and &k # [) eqn (50) reduces to

ot = Ciga [(Bi + 0+ 05+ 8j1) = 2 (Sijn + 6iyi)] (51)

which is zero. A similar result for components & relating shear stress
components with normal deformation components follows from the ma-
jor symmetry of Cijk.

o For those components ¢&; relating two shear stress components eqn
(50) becomes

it = Cignt [(8a1 =+ St + S + 050 — 1]

—
U
o

~

which will be non-zero only if

1. 2=4kand j =1 or.

2.i=land j =4k

Due to symmetry of the deformation rate and stress tensors. this is
a statement that a shear stress component will be related only to the
corresponding shear deformation rate component through the stiffness
tensor G-

Hence the stiffness tensor resulting from the averaged response of the four
orientations is orthotropic.




Figures

Lavout of crystals on parallel arcnitecture

Undeformed and deformed specimens

- Initial specimen texture prior to deformation

Normalized cross-sectional velocity magnitude after final simulation
time step

Crystal Orientation Distribution (COD) polar cross-sections of simu-
lated and experimental texture after deformation

{100} pole figures of simulated and experimental texture after defor-

mation
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